Image Processing
The paper presents a novel dataset of continuous, high-quality, contactless fingerprint image streams of the right-hand thumb finger captured from 46 participants, along with synchronized heart rate measurements. The presented dataset was captured with the help of an off-the-shelf monochrome blue-light fingerprint scanner of 500 ppi with 14 fps, accompanied by a commercially available smartwatch for measuring heart rates.
- Categories:
As coal mining extends to greater depths, accurately detecting coal seam floor undulations, identifying coal thickness variations, and recognizing complex geological features such as collapse columns has become increasingly essential. These challenges raise higher demands for safety and efficiency in mining operations. This study proposes a dynamic interpretation method for intelligent mining faces based on 3D seismic data to enhance the accuracy of detecting coal seam geological structures.
- Categories:
This paper describes a dataset of droplet images captured using the sessile drop technique, intended for applications in wettability analysis, surface characterization, and machine learning model training. The dataset comprises both original and synthetically augmented images to enhance its diversity and robustness for training machine learning models. The original, non-augmented portion of the dataset consists of 420 images of sessile droplets. To increase the dataset size and variability, an augmentation process was applied, generating 1008 additional images.
- Categories:
This is a wheat breeding phenotyping and yield dataset, including canopy height (CH, m), canopy volume (CV, m3), and leaf area index (LAI) collected in the field; vegetation index (VI) generated by multispectral data acquired by UAV remote sensing; trial site weather (Weather); and yield (Yield, kg). The data comes from field trials.
Data acquisition and processing are described in the relevant part of the manuscript.
- Categories:
Visual tracking has seen remarkable advancements, largely driven by the availability of large-scale training datasets that have enabled the development of highly accurate and robust algorithms. While significant progress has been made in tracking general objects, research on more challenging scenarios, such as tracking camouflaged objects, remains limited. Camouflaged objects, which blend seamlessly with their surroundings or other objects, present unique challenges for detection and tracking in complex environments.
- Categories:
Set5, Set11, and Set14 are classic small-scale benchmark datasets widely used for image super-resolution tasks. BSD100 and BSD500 feature complex natural scenes, commonly used for denoising and segmentation research. McM18 is a medical imaging dataset focused on medical image reconstruction. Urban100 emphasizes urban scenes, ideal for evaluating models on high-frequency details and structural textures. These datasets span diverse applications, serving as valuable benchmarks in computer vision research.
- Categories:
The file contains merely a small portion of our research results. The particular picture presented showcases the outcomes that were achieved through our fusion method when applied to the TNO test set. The "ir", which is the abbreviation for infrared light image, is characterized by being rich in thermal radiation information. However, it unfortunately has a rather low spatial resolution. On the other hand, the "vis", representing the visible light image, is abundant in scene information. But it has a drawback in that the human targets within it are not so distinctly visible.
- Categories:
In the captured image, a drone is seen in flight, displaying its advanced technological features and capabilities. The image highlights the drone's robust design and aerodynamic structure, which are essential for its diverse applications in research and development. Drones, also known as Unmanned Aerial Vehicles (UAVs), are increasingly being utilized in various fields due to their ability to collect data from hard-to-reach or hazardous areas.
- Categories:
In recent years, the field of visual tracking has made significant progress with the application of large-scale training datasets. These datasets have supported the development of sophisticated algorithms, enhancing the accuracy and stability of visual object tracking. However, most research has primarily focused on favorable illumination circumstances, neglecting the challenges of tracking in low-ligh environments. In low-light scenes, lighting may change dramatically, targets may lack distinct texture features, and in some scenarios, targets may not be directly observable.
- Categories: